The Bleak House Character Map Project

Abraham Asfaw*
May 2012

1 Introduction

Inspired by Franco Moretti’s visual interpretation of Victorian novels, the
students in ENGL270, Crime and Detection (Spring 2012) set out to create
their own character map of Charles Dickens’ popular novel entitled Bleak
House. Literary critics mark this novel as one of Dickens’s best works; how-
ever, it is also one of his richest creations with several characters. Critical
reading of the novel requires recollection of relationships that have formed
between characters in the novel. In order to simplify the process of recalling
character relationships, this project was started by the author. Following the
approval of Prof. James Arnett (Ph.D.), the project began as a collaboration
between the students enrolled in the course.

2 Project Outline

A website was created] that allowed students to enter relationships between
characters as they discovered these relationships throughout the course read-
ing assignments. Within a month and a half, the website had collected
enough information to allow for the creation of a character map with several
customizations. In this picture, we show three types of characters based on
popularity. The first kinds of characters are relatively unpopular throughout
the story, and develop fewer relationships than all others. These characters

*asfaw@princeton.edu
LCopyright © 2012, Abraham Asfaw http://www.abrahamasfaw.com/bh

http://www.abrahamasfaw.com/bh

and their relationships are shown in varying shades of green based on their
ranked popularity among each other. The second kinds of characters are
more popular and have more complicated relationships throughout the story.
They are shown in varying shades of teal, again ranked by their popularity
among each other. Finally, we have the third kinds of characters which are
central to the story and form relationships with almost all other characters
in the story. They are shown in varying shades of purple based on their
popularities among each other. The most popular characters among these
go beyond purple into dark violet and eventually into black colors.

The meaning of a relationship in this context is loosely defined to be any
form of interaction between characters, ranging from a brief meeting to an
elaborate conversation to familial or marietal engagement.

3 Analysis and Conclusion

The project has achieved its goal of visualizing the relationships between
characters in the novel. The poster presented here is available online at
http://www.abrahamasfaw.com/bh.

The use of lines to indicate relationships between characters is very in-
tuitive and can easily be understood by readers. To the technically inclined
readers, parallels exist between this model of relationship analysis and graph
theory.

The use of colors to rank characters by popularity achieves two goals.
First, the division of the characters into two groups based on overall pop-
ularity allows us to select dim and undistracting colors for the unpopular
characters. This allows greater emphasis on the popular ones. Second, the
ranking of characters in each group by varying shades of color allows us to
perceive an additional dimension to our analysis — that of ranking within the
group. That way, we develop several tiers of character popularity levels.

To the students enrolled in the course, including the author, this project
has had an immense impact on the learning process throughout the semester.
Students were allowed to participate beyond the regular coursework require-
ments by building a character map, thereby working in teams to tackle spe-
cific characters and find relationships that exist between these characters.

To the author, this project has allowed for a fantastic learning opportunity
in which concepts from mathematics and computer science (particularly those
in graph theory) were tied to concepts in literary analysis. Through several

http://www.abrahamasfaw.com/bh

revisions of the script that drew the character maps to the management of
the project website (which rose to first rank on google in less than a month),
a number of invaluable skills were learned throughout the semester.

4 Future Research

Future research could be have two possible directions. The first direction
would be the duplication of this type of project in a different course where
the reading material may be similar or different. The second direction would
be that of developing the tools written in this project to full-blown literary
analysis programs. For instance, the relationships are drawn from character
interactions. An added dimension would be that of where characters met and
the type of relationship between the characters. While the collection of such
information from the reading is not difficult, visualizing it requires attention
to intricate details.

http://abrahamasfaw.com/bh

http://abrahamasfaw.com/bh

5 Acknowledgments

The author would like to thank Prof. James Arnett for the fantastic opportu-
nity of realizing this project. Prof. Arnett kept an open mind and provided
encouragement throughout the semester as several revisions of the analysis
tools were made.

The following is a list of students who participated in the project.
e Abraham Asfaw
e Alexandra Belmont
e Samantha DiMella
e Ritchie Jean-Louis
e Erin Kelly
e Brendan Kiely
e Rachael Losco
e Paolo Martusciello
e Megan McCarthy
e Dimitri Mezidor
e Andrew Michitsch
e Franchesca Santos-Cucalon
e Christopher Smith
e Joshua Steinberg
e Allison Sweeney
e Mayra Yepes
e Marco Zefi

oW O OR R R W™ W

Relationship analyzer

Written for The Bleak House Character Map Project

By Abraham Asfaw ’12

asfaw@princeton. edu

Released under the MIT License —-—

Do whatever you want with this code, but don’t bother
me 1f something goes wrong. You’re welcome to contact
me with suggestions.

from random import randint

#

generate random hex RGB color code

def randcolorstr():

R R R

#
#

startcolor = 0
finishcolor = 255
r = randint(startcolor,finishcolor)

g = randint(startcolor,finishcolor)
b = randint(startcolor,finishcolor)
rstr = "Ux") r

gstr = "x" % g

bstr = "/x" % b

if len(rstr) == 1: rstr = "0" + rstr
if len(gstr) == 1: gstr = "0" + gstr
if len(bstr) == 1: bstr = "0" + bstr
retstr = "#" + rstr + gstr + bstr

return retstr.upper()

convert hsl to rgb based on lightness

low lightness 1 means popular character
popularity vs color index

unpopular —- shades of green

somewhat popular -- shades of teal

very popular -- shades of purple

assignment of colors made by project participants

def hsltorgbstr(l):

if 1 < 0.3: # intense

h,s,1 = 300, 1.000, 1/0.3
elif 1 < 0.67:

h,s,1 = 180, 1.000, (1-0.3)/0.37
else: # weak

h,s,1 = 120, 1.000, (1-0.67)/0.33

c = (1.0-abs(2.0%1-1.0))*s
hp = h/60.0

x = c*(1.0-abs((hp%2.0)-1.0))
if hp >= 0 and hp < 1:
rl,gl,bl = ¢,x,0
elif hp >= 1 and hp < 2:
rl,gl,bl = x,c,0
elif hp >= 2 and hp < 3:
rl,gl,bl = 0,c,x
elif hp >= 3 and hp < 4:
rl,gl,bl = 0,x,c
elif hp >= 4 and hp < 5:
rl,gl,bl = x,0,c
elif hp >= 5 and hp < 6:
rl,gl,bl = ¢,0,x
else:
rl,gl,bl = 0,0,0
m = 1-0.5%c
r,g,b = int((rl + m)*255), int((gl + m)*255), int((bl + m)*255)
rstr, gstr, bstr = str("/x" % r) , str("/x" % g) , str("x" % b)

if len(rstr) == 1: rstr = "0" + rstr
if len(gstr) == 1: gstr = "0" + gstr
if len(bstr) == 1: bstr = "0" + bstr
retstr = "#" + rstr + gstr + bstr

return retstr.upper()

generate hex RGB color code
def colorstr(rank,total):
return hsltorgbstr(1l.0-(rank/total))

read the dictionary file containing relationships
format of input %s a dict

each key is the character name

each item is an array with 2 arrays

[[relationships], [descriptions]]

dictrelsdescs = eval(open("relsnew").read().strip())

words to avoid when looking for a character in relationships

U.IlmatCh = [IIMR. n , llMRS . n s |ISIRII , IILADYII s lITHElI , IIMAN" s |IFRDM|I , IlMRll s IIMRSII]
chars to avoid in names when matching

badchars = [u (n s II) " s ||{|| s n}u]

setup procedures

create charnames which will contain the names of all characters

create dictrels which will contain key=charname and item=array[relatedchars]
create dictn2t which will contain key=charname and ttem=intindex

create dicti2n which will contain key=intindex and key=charname

dictrels = {}

H W OR R R

charnames = dictrelsdescs.keys()

from sets import Set

for charname in charnames:
dictrels[charname] = Set()

dictn2i = {}

dicti2n = {3}

icounter = 1

for charname in charnames:
dictn2i[charname] = str(icounter)
dicti2n[icounter] = charname
icounter += 1

look for relationships and populate dictrels
-> change to uppercase during matching
-> remove bad characters in badchars
-> avoid matching words in unmatch
for character in charnames:
rels = "||".join(dictrelsdescs[character] [0])
for charname in charnames:
if charname != character:
for eachword in charname.split(" "):
ewmod = eachword.upper()
for char in ewmod:
if char in badchars:
ewmod = ewmod.replace(char,"").strip()
if ewmod in rels.upper() and ewmod not in unmatch:
dictrels[character].add(charname)

prepare dot file for writing
fhandle = open("relsnewdot",’w’)
fhandle.write("graph g{\n")

populate excepts with characters whose names will not be in the dotfile
populate dictcounts/[charname] = [count_as_source,count_as_referenced]
excepts = []
dictcounts = {}
for character in charnames:
mentions = 0
for _,ends in dictrels.items():
for end in ends:
if character == end:
mentions += 1
if mentions == 0 and len(dictrels[character]) ==
excepts.append(character)
else:
dictcounts[character] = [len(dictrels[character]), mentions]

totalcounts = []

for character, counts in dictcounts.items():
totalcounts.append([counts[0],character])

totalcounts.sort ()

ranked = [i[1] for i in totalcounts]

populate dictcolors and write characters into dot file with their colors as nodes
dictcolors = {}
for character in charnames:
if character not in excepts:
thischartotals = sum(dictcounts[character])
enable for random color selection
#dictcolors[character] = randcolorstr()
enable for ranked color selection
dictcolors[character] = colorstr(ranked.index(character)+1.0, len(ranked))
fhandle.write(dictn2i[character] + ’[label="’ +
character + " (" + str(dictcounts[character] [0]) +
", " + str(dictcounts[character] [1]) + ’)", color="’ +
dictcolors[character] + ’"];\n’)

write the edges into the dot file
for origin, ends in dictrels.items():
if origin not in excepts:
thiscolor = dictcolors[origin]
for end in ends:
fhandle.write(dictn2ilorigin] + "--" +
dictn2ilend] + ’ [color="’ + thiscolor + ’"];\n’)

finish writing dot file
fhandle.write("}")
fhandle.close()

